MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω       ψ      [  /   ]    .    .


   = [          ] ,     [ ψ      [  /   ]    . ]    .




 /  = [          ] ,     [ ψ      [  /   ]    . ]    .



ψ [ ψ      [  /   ]    . ]    .



ψ     [   ]    .





tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel — a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutoressemicondutores e a invenção do microscópio de tunelamento, por exemplo, renderam à física cinco prêmios Nobel.[6]

Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[6] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo via tunelamento, com uma pequena ajuda matemática de Nikolai Kochin.[7]

Influenciado por Gamow, Max Born desenvolveu a teoria do tunelamento, percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas também a uma série de outros sistemas diferentes. Os físicos Leo EsakiIvar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores e em supercondutores, e a supercorrente através de junções em supercondutores, o que lhes rendeu o Prêmio Nobel de Física no ano de 1973.[8]

Explicação do fenômeno

Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Uma analogia comumente utilizada para explicar o fenômeno do tunelamento quântico consiste em se imaginar uma colina e um trenó subindo em direção ao seu cume. À medida que o trenó vai subindo a colina, parte de sua energia cinética transforma-se em energia potencial gravitacional U. Quando o cume da colina é atingido, o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar até o outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para a direita com energia E, como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplista o efeito Túnel.[9]

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, pode-se considerar três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as três regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[5]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 , 

/

ψ     [   ]    .

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia (Ub – E) entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero

Comments

Popular posts from this blog